Skip to content

Write the first trading bot

In this guide. We will go though from trading idea to an executable bot . Evaluate the bot performance base on back test . And finally run the bot in real exchange .

Step 1 : Find the trading idea

Here’s a simple algorithmic trading strategy for BTC/USDT using a Moving Average Convergence Divergence (MACD) strategy with a Relative Strength Index (RSI) filter. The idea is to use the MACD indicator to identify buy/sell signals and use the RSI as a confirmation filter to reduce false signals.

MACD

# Buy if MACD crosses above the signal line and RSI is below 70
if macd_line > signal_line and previous_macd_line <= previous_signal_line:
    if rsi < 70:
        return True
return False
# Sell if MACD crosses below the signal line and RSI is above 30
if macd_line < signal_line and previous_macd_line >= previous_signal_line:
    if rsi > 30:
        return True
return False

Step 2 : Implement the trading idea

Step 2.1 : Create a new bot

Firstly, You need to chose your language to start with. Then create a class extend the BaseBot class .

public class MyMacdBot extends BaseBot {
}
class MyMacdBot(BaseBot):

Step 2.2 : Setup indicator in your bot

In this step, we'll set up the MACD and RSI indicators in the init method of your bot. This method is called when the bot is initialized, allowing you to configure your indicators with parameters from the backtest UI.

@Override
public void init(Map<String, String> config) {
    BarSeries series = getBarSeries(); 
    ClosePriceIndicator closePrice = new ClosePriceIndicator(series);

    int rsiPeriod = Integer.parseInt(config.get("rsi"));
    this.rsi = new RSIIndicator(closePrice, rsiPeriod);

    int slow = Integer.parseInt(config.get("slow"));
    int fast = Integer.parseInt(config.get("fast"));
    int signalPeriod = Integer.parseInt(config.get("signal"));

    this.macd = new MACDIndicator(closePrice, fast, slow);
    this.signal = new EMAIndicator(macd, signalPeriod);
}
def init(self, config: Dict[str, str]) -> None:
    rsi_period = int(config['rsi'])
    nd_closes = numpy.array(self.bar_series.closes, dtype=np.double)
    self.rsi = abstract.RSI(nd_closes, rsi_period)

    slow = int(config['slow'])
    fast = int(config['fast'])
    signal = int(config['signal'])
    self.macd, self.macdsignal, self.macdhist = abstract.MACD(nd_closes, fastperiod=fast, slowperiod=slow, signalperiod=signal)

Step 2.3 : Implement the isBuy and isSell logic

In this step we will implement the main trading logic of the bot. Which explain on step 1 .

@Override
public boolean isBuy(int idx) {
    Num macdValue = macd.getValue(idx);
    Num signalValue = signal.getValue(idx);
    Num prevMacdValue = macd.getValue(idx - 1);
    Num prevSignalValue = signal.getValue(idx - 1);

    if (macdValue.isGreaterThan(signalValue) && prevMacdValue.isLessThanOrEqual(prevSignalValue)) {
        if (rsi.getValue(idx).doubleValue() < 70) {
            return true;
        }
    }
    return false;
}

@Override
public boolean isSell(int idx) {
    Num macdValue = macd.getValue(idx);
    Num signalValue = signal.getValue(idx);
    Num prevMacdValue = macd.getValue(idx - 1);
    Num prevSignalValue = signal.getValue(idx - 1);

    if (macdValue.isLessThan(signalValue) && prevMacdValue.isGreaterThanOrEqual(prevSignalValue)) {
        if (rsi.getValue(idx).doubleValue() > 30) {
            return true;
        }
    }
    return false;
}
def is_buy(self, idx: int) -> bool:
    if self.macd[idx] > self.macdsignal[idx] and self.macd[idx-1] <= self.macdsignal[-1]:
        if self.rsi[idx] < 70:
            return True
    return False

def is_sell(self, idx: int) -> bool:
    if self.macd[idx] < self.macdsignal[idx] and self.macd[idx - 1] >= self.macdsignal[-1]:
        if self.rsi[idx] > 30:
            return True
    return False

Step 2.4 : Implement the buy and sell logic

In this step we will give the answer of how much we want to buy and sell, provide trading logs via TradeMetadata object .

Example : We will buy 0.1 BTC at the market price ( close price in backTesting ), with a 3% profit and a 2% loss for each trade

@Override
public TradeMetadata buy(int idx) {
    Bar currentBar = getBarSeries().getBar(idx);
    double btcAmount = 0.1;
    double entryPrice = currentBar.getClosePrice().doubleValue();
    double takeProfit = currentBar.getClosePrice().doubleValue() * 1.03;
    double stopLoss = currentBar.getClosePrice().doubleValue() * 0.98;
    String tradeLog = String.format("MyMacdBot Buy, MACD-SIGNAL:%f-%f,PREV(MACD-SIGNAL):%f-%f, RSI: %f",
            macd.getValue(idx).doubleValue(),signal.getValue(idx).doubleValue(), macd.getValue(idx - 1).doubleValue(),
            signal.getValue(idx - 1).doubleValue(), rsi.getValue(idx).doubleValue());
    return new TradeMetadata(entryPrice, btcAmount, takeProfit, stopLoss, tradeLog, 30);
}

@Override
public TradeMetadata sell(int idx) {
    Bar currentBar = getBarSeries().getBar(idx);
    double btcAmount = 0.1;
    double entryPrice = currentBar.getClosePrice().doubleValue();
    double takeProfit = currentBar.getClosePrice().doubleValue() * 0.97;
    double stopLoss = currentBar.getClosePrice().doubleValue() * 1.02;
    String tradeLog = String.format("MyMacdBot Sell, MACD-SIGNAL:%f-%f,PREV(MACD-SIGNAL):%f-%f, RSI: %f",
            macd.getValue(idx).doubleValue(),signal.getValue(idx).doubleValue(), macd.getValue(idx - 1).doubleValue(),
            signal.getValue(idx - 1).doubleValue(), rsi.getValue(idx).doubleValue());
    return new TradeMetadata(entryPrice, btcAmount, takeProfit, stopLoss, tradeLog, 30);
}
def buy(self, idx: int) -> TradeMetadata:
    current_bar = self.bar_series.bars[idx]
    btc_amount = 0.1
    entry_price = current_bar.close
    take_profit_price = current_bar.close * 1.03
    stop_loss_price = current_bar.close * 0.98
    trade_log = "MyMacdBot Buy, MACD-SIGNAL:{:.6f}-{:.6f},PREV(MACD-SIGNAL):{:.6f}-{:.6f}, RSI: {:.6f}"
                      .format(self.macd[idx], self.macdsignal[idx], self.macd[idx], self.macdsignal[idx], self.rsi[idx])
    return TradeMetadata(entry_price, btc_amount, take_profit_price, stop_loss_price, trade_log=trade_log)

def sell(self, idx: int) -> TradeMetadata:
    current_bar = self.bar_series.bars[idx]
    btc_amount = 0.1
    entry_price = current_bar.close
    take_profit_price = current_bar.close * 0.97
    stop_loss_price = current_bar.close * 1.02
    trade_log = "MyMacdBot Sell, MACD-SIGNAL:{:.6f}-{:.6f},PREV(MACD-SIGNAL):{:.6f}-{:.6f}, RSI: {:.6f}"
                      .format(self.macd[idx],self.macdsignal[idx],self.macd[idx],self.macdsignal[idx],self.rsi[idx])
    return TradeMetadata(entry_price,btc_amount,take_profit_price,stop_loss_price,trade_log=trade_log)

Step 3 : Back Test your first bot

Firstly we create a Main class to run our bot.

public class BackTestMain {
    private static final Logger log = LoggerFactory.getLogger(BackTestMain.class);

    public static void main(String[] args) throws IOException, InterruptedException {
        log.info("Starting BackTest {}", MyMacdBot.class);
        BackTestServer server = new BackTestServer(8888, MyMacdBot.class);
        server.start();
        server.blockUntilShutdown();
    }
}
from coin_algorithm.server import back_test_server
import logging
logging.basicConfig(
    level=logging.INFO,  # Set the logging level
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',  # Set the logging format
    handlers=[
        logging.FileHandler("app.log"),  # Log to a file
        logging.StreamHandler()  # Log to the console
    ]
)

def main():
    # log start back test server
    logger = logging.getLogger("main")
    logger.info("Starting back test server")
    back_test_server.serve(port='8888', bot_module='bot.my_macd_bot', bot_class='MyMacdBot')

if __name__ == '__main__':
    main()

Then create a back test with the following configuration algorithm-config

Step 4 : Evaluate back test result

Go to back test history page . Find the latest one . You can see the back test result back-test-result

Step 5 : Run the bot in real exchange

Whenever you believe your bot is ready, you can run it in real exchange and make some profits.

Fristly . You need swap back_test_server to the exchange server and run the bot.

public class BackTestMain {
    private static final Logger log = LoggerFactory.getLogger(BackTestMain.class);

    public static void main(String[] args) throws IOException, InterruptedException {
        log.info("Starting Binance Exchange Server {}", MyMacdBot.class);
        BinanceServer server = new BinanceServer("", "", false, 8888, MyMacdBot.class);
        server.start();
        server.blockUntilShutdown();
    }
}
from coin_algorithm.server import back_test_server
import logging
logging.basicConfig(
    level=logging.INFO,  # Set the logging level
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',  # Set the logging format
    handlers=[
        logging.FileHandler("app.log"),  # Log to a file
        logging.StreamHandler()  # Log to the console
    ]
)

def main():
    # log start back test server
    logger = logging.getLogger("main")
    logger.info("Starting back test server")
    binance_server.serve(port='8888', bot_module='bot.my_macd_bot', bot_class='MyMacdBot', api_key='', secret_key='',is_test_net=Fal;se)

if __name__ == '__main__':
    main()

Then go to the exchange page in the UI and run the bot http://localhost:8080/online/create

Config same as below picture ( nothing much different with back test config except we dont have date range )

trade-setup

Appendix

Source code

https://github.com/truongnhukhang/codetotrade-java-example.git

https://github.com/truongnhukhang/codetotrade-python-example.git